
2025/08/08 18:02 1/5 Core Events

Geodesic Solutions Community Wiki - https://geodesicsolutions.org/wiki/

Core Events

A core event is a way for an addon to interact with the base software to change or add something,
without needing to make any changes to the base code at all.

How it Works

Core events use observer design pattern, also known as publisher/subscriber design pattern. The
"observer" is be the geoAddon class, and the "subscriber" is each individual addon.

An addon will be automatically subscribed to a core event, if 2 things happen:

in info.php, the core event's name is found in the addon's $core_events var.
in the util.php file, the addon's util class has a matching method that is named the same as the
core event name, prepended with "core_"1).

In the base code, to trigger a core event, it will look something like this:

geoAddon::triggerDisplay('event_name',$vars, geoAddon::FILTER);

Breaking that call down:

triggerDisplay: triggerDisplay means that what the addon returns is important. There is a sister
function, geoAddon::triggerUpdate() which does not care what is returned, when that is
used it is for notification purposes only, anything returned by the addon is ignored2).

event_name: This is the event name. If the event is for a specific thing, it may start with the
class name and function name it is being called from, to make it easier to identify where the
event is used.

$vars: These are the variables that will be passed to the addon when calling the core event's
function in util.

geoAddon::FILTER: This is what type of core event this is, in this case it is a filter core event.
If not specified, the default type is "string" which means all the stuff returned from each addon
is concatenated together (separated by the optional 4th parameter). The
geoAddon::RETURN_STRING type is the original type of core event, and is one of the reasons
the function is named triggerDisplay.

When a core event is triggered (by making a call similar to above) in the base code, the addon system
sees which addons are subscribed to that event, and notifies each one by calling the before
mentioned method in the util class of that addon. Depending on the core event's type, it may or may
not do something with what is returned by the addon.

Core Event Types based on Return Value

Below are the different core event types based on how the returned value is used.

http://www.google.com/search?q=observer+design+pattern
http://www.google.com/search?hl=en&q=publisher+subscriber+design+pattern

Last update:
2014/09/25 16:55 developers:addons:core_events https://geodesicsolutions.org/wiki/developers/addons/core_events?rev=1231190216

https://geodesicsolutions.org/wiki/ Printed on 2025/08/08 18:02

Core event
type

class constant used for
trigger

Event name
beginning3) Description

Notification N/A 4) notify_

This is a notification to let the addon know
that something is happening, so that the
addon can do something it may need to do
at that time. This type is used when an
addon might want to manipulate something
more complex than a simple string. For
instance the event notify_display_page,
happens at the top of
geoSite→display_page() in order to allow an
addon to manipulate the view class
template vars, or to manipulate the geoSite
class's variables. It may also be used when it
is desirable to do some type of logging.

Filter geoAddon::FILTER filter_

A string is passed to the addon as the only
variable. The addon is expected to
filter/manipulate the string, then return the
filtered string (or return the string un-
modified if the addon doesn't want to
change it).

Overload geoAddon::OVERLOAD

overload_
then the
class and
method
name being
overloaded

This allows an addon to take over a specific
function and do things its own way. A
overload event allows you to replace a
function with your own, where a filter event
would happen at the end of a function and
allow you to modify what the function is
about to return. If the addon returns the
constant geoAddon::NO_FILTER then the
calling function keeps going on its merry
way. Otherwise, if anything else is returned,
then the calling function will return that
value, effectively skipping what would
normally be done by that function. The
addon is responsible for returning the same
stuff the original function would return, and
for doing any input checking that might be
needed, in other words it is responsible for
doing everything the original function would
have done.

Return a
String

geoAddon::RETURN_STRING
or geoAddon::ARRAY_STRING it varies

Addon is expected to return a string (that
will usually be used to display on the page).
In the case of geoAddon::RETURN_STRING:
The results of each addon will be
concatenated together, sometimes
separated by some string that is passed as
the optional 4th parameter to
triggerDisplay(). In the case of
geoAddon::ARRAY_STRING: the results of
each addon are returned in an array, one
array entry per addon.

Return an
Array geoAddon::ARRAY_ARRAY it varies

The addon is expected to return an array, if
it returns anything other than an array, the
returned value is ignored.

2025/08/08 18:02 3/5 Core Events

Geodesic Solutions Community Wiki - https://geodesicsolutions.org/wiki/

Core event
type

class constant used for
trigger

Event name
beginning3) Description

Return
boolean
true

geoAddon::RETURN_TRUE it varies

If the addon returns true, no other addons
are processed, and boolean true is passed
back. If the addon returns anything else, it
will be ignored and the rest of the addons
will be processed. If all addons are
processed and none return true, the trigger
call will return boolean false.

Return
boolean
false

geoAddon::RETURN_FALSE it varies

Acts much like return true type, but
opposite: if addon returns false, no other
addons are processed and triggerDisplay
returns false. If no addons return false,
triggerDisplay returns true.

Return not-
null value geoAddon::NOT_NULL it varies

Related to return true and return false
types, but in this case if the addon returns
anything besides strict null, it stops
processing addons and returns that as the
results of triggerDisplay. This is used mostly
in authentication type events, where you
can return true to allow, false to say not
allowed, or null if indifferent.

Core Event Types based on What they Do

Most core events fall into one category or another based on what they are used for. Below is more
details on each.

For more information on each individual core event, see the documentation in the example addon.

filter

The string to filter is passed in as $var to the addon. The addon is expected to return the filtered
version of that string. If it wasn't obvious, this falls into the "Filter" return type. Events will be
prepended with filter_.

A lot of the filter events are used to filter the results of a particular function, in those cases the name
of the event is usually filter_[CLASS NAME]_[FUNCTION NAME].

overload

Used to take over a particular task and skip the built-in functionality that would normally be done by
the base code. Events will be prepended with overload_, the entire event name usually follows
something like overload_[class name]_[function name].

notify

Last update:
2014/09/25 16:55 developers:addons:core_events https://geodesicsolutions.org/wiki/developers/addons/core_events?rev=1231190216

https://geodesicsolutions.org/wiki/ Printed on 2025/08/08 18:02

This event type is to notify the addon of a certain event, to allow the addon to do things at a specific
point. The value returned by the addon for this event type is ignored. Events will be prepended with
notify_.

email

This is a special case core event, it doesn't fall into any particular category, it is its own category.

Right now, this event is used as the only way that e-mails are sent by the software, through the use of
the Send Mail Direct addon. Without an addon that uses the email core event, no e-mails would be
sent by the software.

Something to be aware of for future versions: We plan to move the main mailing functionality to a
base geoMail class in the future.

auth

Authorization core events. Most commonly used to see if a user has authorization to edit or delete a
listing that was not started by the user. See the "Return not null" type of core event above for how
the returned value is treated. Events will be prepended with auth_.

session

These core events are to deal with the user session or session data. In all events so far, it is done in
addition to, not instead of, the built in stuff. It works kind of like a filter, except that the return values
are ignored. It is passed the session info, and that is it. Events will be prepended with session_.

These are what the Bridge addon uses to do it's thing for syncing up login/logout with other
installations.

user

These are for stuff dealing with things happening to a user, like registering a new user, editing a
user's info, etc. This is in addition to, not instead of. Events will be prepended with user_.

The applicable user info is passed in, and the return value is ignored.

errorhandle

This is a special case, this is the name of a core event that is it's own category. It is triggered every
time an error is triggered in the system (even notifications).

In the software, we use trigger_error() as a debugging message tool, the message syntax will match:

2025/08/08 18:02 5/5 Core Events

Geodesic Solutions Community Wiki - https://geodesicsolutions.org/wiki/

[ERROR|DEBUG] [TAG1[TAG2...]]: Message

It can have any number of "tags", all uppercase, all separated by spaces, and ended with :. This
allows us to log or display all messages that relate to a particular thing, for instance the tag name
"STATS" is used for common bottleneck locations and other areas related to helping with software
optimization, to help us speed up the software.

There are 2 addons included with the software that make use of this, one displays them on the page
based on what "type" is currently activated, the other logs them in a log file based on settings. Using
these built in addons will be the subject of another page in the wiki. The point is, we already have one
addon demonstrating how to display on the page, another demonstrating how to log it to a file. You
could create your own addon that might e-mail the admin user any time some certain thing
happened, for example.

app_bottom

This is another core event that is it's own category. "Bottom" in this case, refers to the end of the
page load, where the script is wrapping things up, not the physical location somewhere on a page.
This core event is used to allow you to do things right before the page is done, but after the page is
already displayed. In other words: It's closing time, you don't have to go home but you can't stay
here.

1)

This is to keep things nice and tidy in the util class, so that it is clear which functions are called by the
addon system as core events, and which are utility functioned called from somewhere in the addon
itself.
2)

although the addon can still affect things, for instance an addon might manipulate the template vars
stored in the geoView class
3)

Core events will sometimes be pre-pended with something so that it is obvious what type of core
event it is. It is not an absolute rule, just a rule of thumb that the event name will start with what is
noted.
4)

No class constant is passed during trigger, because this is the one and only type of core event that is
triggered using geoAddon::triggerUpdate() which does not have a variable for event type.

From:
https://geodesicsolutions.org/wiki/ - Geodesic Solutions Community Wiki

Permanent link:
https://geodesicsolutions.org/wiki/developers/addons/core_events?rev=1231190216

Last update: 2014/09/25 16:55

https://geodesicsolutions.org/wiki/
https://geodesicsolutions.org/wiki/developers/addons/core_events?rev=1231190216

	Core Events
	How it Works
	Core Event Types based on Return Value
	Core Event Types based on What they Do
	filter
	overload
	notify
	email
	auth
	session
	user
	errorhandle
	app_bottom

